
VPS (9) FreeBSD Kernel Developer’s Manual VPS(9)

NAME
vps — Virtual Private Systems internals

DESCRIPTION
This manual page is supposed to give an overview of how Virtual Private Systems (short VPS) works and
how it is implemented.

IMPLEMENTATION NOTES
As much as possible (which is almost all) of the code resides in thesys/vps directory.

It can be roughly split up into several components:

core All that absolutely has to be statically linked into the kernel. Very early in the boot process the
kernel has to be able to allocate thevps0 instance, which is the instance reflecting the physical
host.

The smaller this part is, the better, as it is even there when VPS is not used.

Files: vps/vps_core.c, vps/vps_priv.c, vps/vps_console.c,
vps/vps_pager.c, vps/vps_devfsruleset.h, vps/vps_int.h, vps/vps.h

device Provides the/dev/vps interface and all functions for managing VPS from userspace.

Files:vps/vps_dev.c, vps/vps_user.c, vps/vps_user.h

network interface
ThevpsN network device. Actslike avirtual layer 3 switch, is the easiest way of connecting up
VPS instances to a physical network.

Files:vps/if_vps.c

suspend
Suspending and resuming a vps instance.

Files:vps/vps_suspend.c

libdump
Common routines for the snapshot and restore modules and userspace programs.Provides func-
tions for reading and manipulating snapshot files and definitions of all involved data structures.

Files:vps/vps_libdump.c, vps/vps_libdump.h

snapshot
All the snapshot functionality.

Files:vps/vps_snapst.c, vps/vps_snapst.h

restore
All the restore functionality.

Files:vps/vps_restore.c

accounting
All the resource accounting and limiting functionality.

Files:vps/vps_account.c, vps/vps_account.h

debug Debugging routines,DDB integration.

Files:vps/vps_ddb.c

FreeBSD 10.0 August 29, 2012 1

VPS (9) FreeBSD Kernel Developer’s Manual VPS(9)

Overview how things work:

Taking snapshots
This procedure is quite simple. First all threads have to be suspended, which happens at the end of
thesyscall() function. A flag in the respective vnet instance is set, causingtcp_input()
andtcp_output() to drop incoming data and not sending outgoing data.This is important for
live migration.

Then general information about the vps instance is dumped, after that each mount that belongs in
the vps context. Next is networking related information like interfaces, routing tables.

Each process gets dumped, including proc structure, user credentials, signal handlers, vmspace,
fdset, and threads.Note that the userspace pages (vmspace) are not copied but wired and directly
mapped in the vmspace of vpsctl.

When the /dev/vps filehandle on which snapshot was requested is closed again, the snapshot infor-
mation is deleted and the vps instance remains suspended and can be resumed again.

The resulting snapshot or dump is of a well-defined format.This format is defined in vps/vps_lib-
dump.h and has a version number.

This allows live migration between different kernel versions and kernels compiled with different
options that result in different data structures.

Restoring snapshots
This applies for restoring from a file and in live migration as well.

First sanity checks on the restore file have to be performed. Firstof all a magic pattern in the
header, a checksum and the snapshot format version are compared.The dumped objects are serial-
ized using length encoding, so it is necessary to check nothing runs out of bounds.

If the snapshot file is found to be valid, or the user forced it, the actual restore process is started.A
new vps instance is allocated, general vps information, mounts, network interfaces, including their
flags and addresses, and routing tables are restored. Then sessions (for process groups) are
restored, and then each process including all its information.Threads which were interrupted in
certain syscalls get fixed up.For instance nanosleep is restarted for sleeping the remaining time.
Afterwards the process tree (child/parent relationship, process groups, ...) is fixed up.At the end
leftovers are cleaned up and the restored vps instance remains in state suspended, ready for being
resumed.

Virtualization of globals
Currently for storing and accessing virtualized global variablesvnet is used. This can be changed
easily by replacing a few macros.

Theprocess tree, i.e. the proctree, allproc and zombproc list and locks, are private to each
vps instance. This allows each vps instance to run its init task as pid 1, and using the right pids
when restoring a vps instance.

Devfs keeps a reference in each mount to the respective vps instance, and can therefore provide
virtualized namespace for devices like pseudo ttys. The pts code already uses ucred references, so
the only extension is support for restoring pts instances with certain unit numbers. The unit num-
ber allocator (kern/subr_unit.c) was extended by unr_alloc_unit().

Privilege checking / Security
By default a reasonable set ofpriv(9) privileges is given to a vps instance, but it is possible to
give any privilege to a vps instance by configuration.

FreeBSD 10.0 August 29, 2012 2

VPS (9) FreeBSD Kernel Developer’s Manual VPS(9)

Resource accounting and limiting
Currently might not always work as expected.

SEE ALSO
vps(4),vpsctl(8),vps.conf(5),mount_vpsfs(8), http://www.7he.at/freebsd/vps/

HISTORY
Work on VPS was started in February 2009.

AUTHORS
Virtual Private Systems for FreeBSD and this manual page as well, were written by Klaus P. Ohrhallinger.

Development of this software was partly funded by:

TransIP.nl <http://www.transip.nl/>

BUGS
VPS is in an early stage of development and has to be considered as experimental. Thismeans many bugs
have to be expected.

Please submit bug reports tofreebsd-vps@7he.at.

VERSION
$Id: vps.9 120 2012-08-30 11:14:36Z klaus $

FreeBSD 10.0 August 29, 2012 3

